Miscellaneous Items

Tom Clune :::

SIVO Fortran 2003 Series :.
March 11, 2008

Logistics

e Materials for this series can be found at

Contains slides and source code examples.
Latest materials may only be ready at-the-last-minute.

e Please be courteous:

Remote attendees should use “*6” to toggle the mute. This
will minimize background noise for other attendees.

e Webex - under investigation

3/11/08 I/O Enhancements 2

Outline

Computing Environment
|O seen before
Count, get

Array Constructor Syntax

Module enhancements
IMPORT Statement
New attributes

PROTECTED
VOLATILE

Renaming operators
Changes to intrinsic functions
Length of names/statements
Complex constants C = (0.0,pi)
Support for international character sets

3/11/08 I/O Enhancements

Computing Environment

e From the infrinsic module ISO FORTRAN ENV

e For the following assume we have launched the executable with
the command line: % foo.x apple 5 z
e COMMAND ARGUMENT COUNT/()
Returns integer number of command arguments
Example command returns 3
e GET COMMAND([COMMAND, LENGTH, STATUS])
All INTENT (OUT) and OPTIONAL
LENGTH - integer # of characters in command
STATUS - integer (success/failure)
Results for example command:

COMMAND="foo.x apple 5 z"
LENGTH=15

3/11/08 I/O Enhancements 4

Computing Env (cont’d)

e GET COMMAND ARGUMENT (NUMBER[, VALUE, LENGT
H, STATUS])

3/11/08

NUMBER - selects argument

VALUE - character, intent(out) value of argument
LENGTH - number of characters in argument
STATUS - integer (success/failure)

Example command yields:

GET_COMMAND_ARGUMENT(0,VALUE,LENGTH) yields
VALUE="fo0.x”, LENGTH=5

GET_COMMAND_ARGUMENT(2,VALUE,LENGTH) yields
VALUE="5", LENGTH=1

I/O Enhancements 5

Computing Env. (cont’d)

e GET ENVIRONMENT VARIABLE (NAME[,VALUE,
LENGTH, STATUS, TRIM NAME])

3/11/08

NAME - character, intent(in), name of environment variable
VALUE - character, intent(out) value of env variable
LENGTH - number of characters in value - O if does not exist
STATUS - success/fail

TRIM_NAME - logical, intent(in) for ignoring trailing blanks

I/O Enhancements 6

Environment examples

Getting command arguments:

use ISO FORTRAN ENV

character (len=MAXLEN ARG) :: argl, arg2
call get command argument(1l, VALUE=argl)
call get command argument (2, VALUE=arg2)
read(argl,’(1)’) nx

read(arg2,’'(1)’') ny

Getting an environment variable:
use ISO FORTRAN ENV
character(len=100) :: myShell

call get environment variable(’SHELL’, myShell)

3/11/08 I/O Enhancements 7

Array Constructor Syntax

e Can now use “[" and “]” rather than “(/*, “/)” to construct
arrays:

x(1:5)=1[0.,1.,2.,3.,4.]

e Can also specify type inside constructor
Follows rules of instrinsic assignment
Allows type conversion within the constructor
Convenient for mixing types/kinds/lengths
Mixed real/integer: x(1:5) = [real :: 0,1.,2.,3,4]
Mixed string lengths:
names = [character(len=10):: ‘SpongeBob’, ‘Patrick’]
Also useful for derived types:
list =[myType :: a, b, C]

3/11/08 I/O Enhancements 8

IMPORT Statement

e A common pitfall when using F90/F95 is the declaration of an
interface block than needs to “use” a derived type defined in the
same module:

module foo
type bar
integer :: I,J
end type bar

interface
subroutine externFunc(B)
use foo, only: bar ! Not allowed?
type (bar) :: B
end subroutine externFunc
end interface

3/11/08 I/O Enhancements 9

IMPORT Statement (cont’d)

e IMPORT is a new statement to address this issue
Very similar to USE statement
Specifies all entities in host scoping unit that are accessible
Use “ONLY” clause to limit selection
All entities are accessible by default
Only allowed in an interface body within a module

e Example:

interface
subroutine externFunc(B)
import foo, only: bar
type (bar) :: B
end subroutine externFunc
end interface

3/11/08 I/O Enhancements 10

PROTECTED Attribute

e F2003 introduces the new attribute PROTECTED which provides a
safety mechanism analogous to INTENT (IN)

3/11/08

Specifies that the variable (or pointer status) may be altered only within the
host module

Property is recursive. l.e. if a variable of derived type is PROTECTED, all of
its subjobjects also have the attribute

For pointers, only the association status is protected. The target may be
modified elsewhere.

Example:

module foo
private ! Good default
real, public :: pi
protected :: pi ! Allow value to be read

I/O Enhancements 11

VOLATILE Attribute

e Introduced for a data object to indicate that its value might be
modified by means external to the program.

Non standard extensions (e.g. threads)
Card connected to external lab instrument
Etc.
e Effect is that the compiler is required to not rely on values in
cache or other temporary memory.
Can prevent some common optimizations

e If an object has the VOLATILE attribute, so do all of its
subobjects.

e For pointers, attribute refers only to the association status, not
the target.

3/11/08 I/O Enhancements 12

Renaming operators

e F2003 extends the rename capability on USE
statements to include renaming operators that are not

Intrinsic operators:
USE MY MODULE, OPERATOR(.MyAdd.) => OPERATOR(.ADD.)

This allows .MyAdd. to denote the operator .ADD. accessed
from the module.

3/11/08 I/O Enhancements 13

Changes to Intrinsic Functions

e Argument COUNT RATE for SYSTEM CLOCK () can
now be of type real.

Previously had to convert integer to compute reciprocal to
determine elapsed time

e MAX, MAXLOC, MAXVAL, MIN, MINLOC, MINVAL
have all been extend to apply to type CHARACTER

e ATANZ2, LOG, and SQRT have minor changes to take
iInto account positive/negative zero for vendors that
support the distinction.

3/11/08 I/0O Enhancemen ts 14

Lengths of Names/Constants

e Variables may be declared with names of up to 63
characters

e Statements of up to 256 lines are permitted.

e Primarily aimed at supporting automatic code
generation

3/11/08 I/0O Enhancemen ts 15

Complex constants

e Named constants may be used to specify real or

iImaginary parts of a complex constant:
REAL, PARAMETER :: pi = 3.1415926535897932384

COMPLEX :: C = (0.0,p1)

3/11/08 I/O Enhancements

16

Pitfalls and Best Practices

e Environment
Use LENGTH keyword to ensure buffers are large enough
Check status - did the command succeed?

e Use named constants when possible

3/11/08 I/O Enhancements 17

o000
o0
°
Supported Features

Compiler Ifort Ifort 10.1 | NAG | XLF | G95 | Gfortran pgi

9.1.049 5.1 | 11.0 | 0.90 | 20070810 | 6.2.4
Environment no yes yes | yes | yes yes no
Array Constructor yes* yes* yes* | yes | yes* yes no
Import yes yes yes | yes | yes yes no
Protected yes yes yes | yes | yes yes no
Volatile yes yes yes | yes | yes yes no
Real clock_rate no no no yes no no no
Complex constructor yes yes no yes | yes yes yes
Character max, min, etc no no no yes | yes no yes

Feel free to contribute if you have
access to other compilers not
mentioned!

3/11/08

I/O Enhancements

18

Resources

SIVO Fortran 2003 series:

Questions to Modeling Guru:
SIVO code examples on Modeling Guru
Fortran 2003 standard:

John Reid summary:

Newsgroups

Mailing list

3/11/08 I/O Enhancements

19

Next Fortran 2003 Session
e Introduction to Object Oriented

Programming for Scientists
e Tom Clune will present
e Tuesday, April 08, 2008
e B28-E210 @ 12:00 noon

nnnnnnnnnnnnnnn

